274 research outputs found

    Zero-lag long-range synchronization of Hodgkin-Huxley neurons is enhanced by dynamical relaying : poster presentation

    Get PDF
    Background The synchrony hypothesis postulates that precise temporal synchronization of different pools of neurons conveys information that is not contained in their firing rates. The synchrony hypothesis had been supported by experimental findings demonstrating that millisecond precise synchrony of neuronal oscillations across well separated brain regions plays an essential role in visual perception and other higher cognitive tasks [1]. Albeit, more evidence is being accumulated in favour of its role as a binding mechanism of distributed neural responses, the physical and anatomical substrate for such a dynamic and precise synchrony, especially zero-lag even in the presence of non-negligible delays, remains unclear. Here we propose a simple network motif that naturally accounts for zero-lag synchronization for a wide range of temporal delays [3]. We demonstrate that zero-lag synchronization between two distant neurons or neural populations can be achieved by relaying the dynamics via a third mediating single neuron or population. Methods We simulated the dynamics of two Hodgkin-Huxley neurons that interact with each other via an intermediate third neuron. The synaptic coupling was mediated through alpha-functions. Individual temporal delays of the arrival of pre-synaptic potentials were modelled by a gamma distribution. The strength of the synchronization and the phase-difference between each individual pairs were derived by cross-correlation of the membrane potentials. Results In the regular spiking regime the two outer neurons consistently synchronize with zero phase lag irrespective of the initial conditions. This robust zero-lag synchronization naturally arises as a consequence of the relay and redistribution of the dynamics performed by the central neuron. This result is independent on whether the coupling is excitatory or inhibitory and can be maintained for arbitrarily long time delays (see Fig. 1). Conclusion We have presented a simple and extremely robust network motif able to account for the isochronous synchronization of distant neural elements in a natural way. As opposed to other possible mechanisms of neural synchronization, neither inhibitory coupling, gap junctions nor precise tuning of morphological parameters are required to obtain zero-lag synchronized neuronal oscillation

    Analytical and Numerical Studies of Noise-induced Synchronization of Chaotic Systems

    Full text link
    We study the effect that the injection of a common source of noise has on the trajectories of chaotic systems, addressing some contradictory results present in the literature. We present particular examples of 1-d maps and the Lorenz system, both in the chaotic region, and give numerical evidence showing that the addition of a common noise to different trajectories, which start from different initial conditions, leads eventually to their perfect synchronization. When synchronization occurs, the largest Lyapunov exponent becomes negative. For a simple map we are able to show this phenomenon analytically. Finally, we analyze the structural stability of the phenomenon.Comment: 10 pages including 12 postscript figures, revtex. Additional work in http://www.imedea.uib.es/Nonlinear . The paper with higher-resolution figures can be obtained from http://www.imedea.uib.es/PhysDept/publicationsDB/date.htm

    Anticipating the response of excitable systems driven by random forcing

    Get PDF
    We study the regime of anticipated synchronization in unidirectionally coupled model neurons subject to a common external aperiodic forcing that makes their behavior unpredictable. We show numerically and by implementation in analog hardware electronic circuits that, under appropriate coupling conditions, the pulses fired by the slave neuron anticipate (i.e. predict) the pulses fired by the master neuron. This anticipated synchronization occurs even when the common external forcing is white noise.Comment: 12 pages (RevTex format

    A mechanism for achieving zero-lag long-range synchronization of neural activity

    Get PDF
    Poster presentation: How can two distant neural assemblies synchronize their firings at zero-lag even in the presence of non-negligible delays in the transfer of information between them? Neural synchronization stands today as one of the most promising mechanisms to counterbalance the huge anatomical and functional specialization of the different brain areas. However, and albeit more evidence is being accumulated in favor of its functional role as a binding mechanism of distributed neural responses, the physical and anatomical substrate for such a dynamic and precise synchrony, especially zero-lag even in the presence of non-negligible delays, remains unclear. Here we propose a simple network motif that naturally accounts for zero-lag synchronization of spiking assemblies of neurons for a wide range of temporal delays. We demonstrate that when two distant neural assemblies do not interact directly but relaying their dynamics via a third mediating single neuron or population and eventually achieve zero-lag coherent firing. Extensive numerical simulations of populations of Hodgkin-Huxley neurons interacting in such a network are analyzed. The results show that even with axonal delays as large as 15 ms the distant neural populations can synchronize their firings at zero-lag in a millisecond precision after the exchange of a few spikes. The role of noise and a distribution of axonal delays in the synchronized dynamics of the neural populations are also studied confirming the robustness of this sync mechanism. The proposed network module is densely embedded within the complex functional architecture of the brain and especially within the reciprocal thalamocortical interactions where the role of indirect pathways mimicking direct cortico-cortical fibers has been already suggested to facilitate trans-areal cortical communication. In summary the robust neural synchronization mechanism presented here arises as a consequence of the relay and redistribution of the dynamics performed by a mediating neuronal population. In opposition to previous works, neither inhibitory, gap junctions, nor complex networks need to be invoked to provide a stable mechanism of zero-phase correlated activity of neural populations in the presence of large conduction delays

    Diversity-induced resonance

    Get PDF
    We present conclusive evidence showing that different sources of diversity, such as those represented by quenched disorder or noise, can induce a resonant collective behavior in an ensemble of coupled bistable or excitable systems. Our analytical and numerical results show that when such systems are subjected to an external subthreshold signal, their response is optimized for an intermediate value of the diversity. These findings show that intrinsic diversity might have a constructive role and suggest that natural systems might profit from their diversity in order to optimize the response to an external stimulus.Comment: 4 pages, 3 figure

    Anticipated Synchronization in a Biologically Plausible Model of Neuronal Motifs

    Get PDF
    Two identical autonomous dynamical systems coupled in a master-slave configuration can exhibit anticipated synchronization (AS) if the slave also receives a delayed negative self-feedback. Recently, AS was shown to occur in systems of simplified neuron models, requiring the coupling of the neuronal membrane potential with its delayed value. However, this coupling has no obvious biological correlate. Here we propose a canonical neuronal microcircuit with standard chemical synapses, where the delayed inhibition is provided by an interneuron. In this biologically plausible scenario, a smooth transition from delayed synchronization (DS) to AS typically occurs when the inhibitory synaptic conductance is increased. The phenomenon is shown to be robust when model parameters are varied within physiological range. Since the DS-AS transition amounts to an inversion in the timing of the pre- and post-synaptic spikes, our results could have a bearing on spike-timing-dependent-plasticity models

    Coherence Resonance in Chaotic Electronic Circuits

    Get PDF
    It is experimentally demonstrated that a chaotic electronic circuit exhibits the main features of coherence resonance. This phenomenon shows up as a quasi-periodic response when the circuit is subjected to an external white-noise source of the appropriate levelThis work has been supported by DGES (Spain) project PB97-0141-C02-01 and MCyT (Spain) project BMF2MO-1108.Peer reviewe
    • …
    corecore